On the Relations between Two Types of Convergence for Convex Functions
نویسنده
چکیده
Theory and applications have shown that there are two important types of convergence for convex functions: pointwise convergence and convergence in a topology induced by the convergence of their epigraphs. We show that these two types of convergence are equivalent on the class of convex functions which are equi-lower semicontinuous. This turns out to be maximal classes of convex functions for which this equivalence can be obtained. We also indicate a number of implications of these results to the convergence of convex sets and the corresponding support functions and to the convergence of the i&ma of sequences of convex minimization problems.
منابع مشابه
Partial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کاملFURTHER RESULTS OF CONVERGENCE OF UNCERTAIN RANDOM SEQUENCES
Convergence is an issue being widely concerned about. Thus, in this paper, we mainly put forward two types of concepts of convergence in mean and convergence in distribution for the sequence of uncertain random variables. Then some of theorems are proved to show the relations among the three convergence concepts that are convergence in mean, convergence in measure and convergence in distributio...
متن کاملSome properties and results for certain subclasses of starlike and convex functions
In the present paper, we introduce and investigate some properties of two subclasses $ Lambda_{n}( lambda , beta ) $ and $ Lambda_{n}^{+}( lambda , beta ) $; meromorphic and starlike functions of order $ beta $. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملTwo Settings of the Dai-Liao Parameter Based on Modified Secant Equations
Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods, we introduce two new parameters based on the modified secant equation proposed by Li et al. (Comput. Optim. Appl. 202:523-539, 2007) with two approaches, which use an extended new conjugacy condition. The first is based on a modified descent three-term search direction, as the descent Hest...
متن کامل